Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion criteria to develop, experiment, and responsibly scale your generative AI concepts on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to enhance thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial differentiating function is its reinforcement learning (RL) action, which was utilized to refine the design's responses beyond the standard pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately enhancing both importance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, indicating it's geared up to break down complex questions and factor through them in a detailed manner. This assisted thinking process enables the model to produce more precise, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to generate structured reactions while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has caught the market's attention as a flexible text-generation model that can be incorporated into different workflows such as agents, rational thinking and information interpretation tasks.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion parameters, allowing efficient reasoning by routing inquiries to the most pertinent expert "clusters." This technique allows the design to concentrate on different issue domains while maintaining overall effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 design to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient designs to imitate the habits and reasoning patterns of the bigger DeepSeek-R1 design, using it as an instructor model.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this model with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and examine models against crucial security requirements. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce several guardrails tailored to different use cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation increase, produce a limit boost demand and reach out to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For guidelines, see Set up permissions to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, avoid damaging material, and evaluate models against key safety requirements. You can carry out precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic flow involves the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas show inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and select the DeepSeek-R1 model.
The design detail page offers essential details about the design's capabilities, prices structure, and implementation guidelines. You can discover detailed usage directions, including sample API calls and code snippets for combination. The design supports different text generation tasks, consisting of content development, code generation, and question answering, utilizing its support learning optimization and CoT thinking abilities.
The page likewise consists of deployment choices and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, choose Deploy.
You will be triggered to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of circumstances, go into a number of circumstances (in between 1-100).
6. For example type, choose your instance type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can set up advanced security and facilities settings, including virtual private cloud (VPC) networking, service role permissions, and encryption settings. For the majority of use cases, the default settings will work well. However, for production implementations, you might desire to review these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to start utilizing the model.
When the implementation is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in playground to access an interactive interface where you can try out different triggers and change design criteria like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for ideal results. For example, content for inference.
This is an excellent way to check out the design's thinking and text generation abilities before integrating it into your applications. The play ground supplies immediate feedback, assisting you comprehend how the model reacts to different inputs and letting you tweak your triggers for optimal outcomes.
You can quickly test the model in the play ground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example shows how to perform reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends a request to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML services that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides two practical methods: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the approach that best suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be prompted to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design browser shows available models, with details like the provider name and design capabilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each design card reveals essential details, including:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if applicable), indicating that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the design card to see the model details page.
The design details page includes the following details:
- The design name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical specifications.
- Usage guidelines
Before you deploy the design, it's recommended to evaluate the model details and license terms to verify compatibility with your use case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the immediately generated name or produce a customized one.
- For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, get in the number of circumstances (default: 1). Selecting suitable instance types and counts is crucial for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
- Review all configurations for accuracy. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to release the design.
The deployment procedure can take several minutes to finish.
When is total, your endpoint status will alter to InService. At this moment, the design is all set to accept reasoning demands through the endpoint. You can keep an eye on the implementation development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is complete, you can conjure up the design utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and it-viking.ch implement it as displayed in the following code:
Clean up
To avoid unwanted charges, complete the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the design utilizing Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations. - In the Managed deployments section, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're deleting the right implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious options utilizing AWS services and accelerated compute. Currently, he is concentrated on establishing techniques for fine-tuning and enhancing the inference efficiency of large language models. In his totally free time, Vivek takes pleasure in hiking, viewing motion pictures, and attempting different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing solutions that assist customers accelerate their AI journey and unlock organization value.